

Erasmus MC

University Medical Center Rotterdam

Modeling Efforts to Inform Countries' Screening Decisions

Ann Graham Zauber, Iris Vogelaar, Marjolein van Ballegooijen, Deb Schrag, Rob Boer,

Dik Habbema, and Sidney Winawer

May 11, 2006

International Breast Cancer Screening Network
Biennial Meeting, Ottawa, Canada

Outline

- What is the need for modeling?
 - CISNET program
 - How to assess screening effect when no RCT?
 - How to assess potential effects of interventions?
 - How to develop a microsimulation model?

Example:

Will we meet Healthy People 2010 goal?

One-third reduction of colorectal cancer mortality by 2010?

Cancer Intervention and Surveillance Modeling Network (CISNET): Purpose

- NCI sponsored consortium of modelers with focus on
 - Simulation and mathematical modeling impact of cancer control interventions –, primary prevention, screening, treatment -
 - Assess current and future population trends in incidence and mortality
 - Optimal cancer control planning

Cancer Intervention and Surveillance Modeling Network (CISNET): <u>Programs</u>

- Statistical Research and Applications Branch of Division of Cancer Control and Population Sciences of NCI
- 15 grants in colorectal, prostate, breast, and lung
- 3 in colorectal cancer
 - MSK-Erasmus (MISCAN)
 - Harvard School of Public Health
 - Group Health Cooperative
- Kathy Cronin of NCI presenting on breast tomorrow

US Colonoscopy Screening Studies on Neoplastic Yield

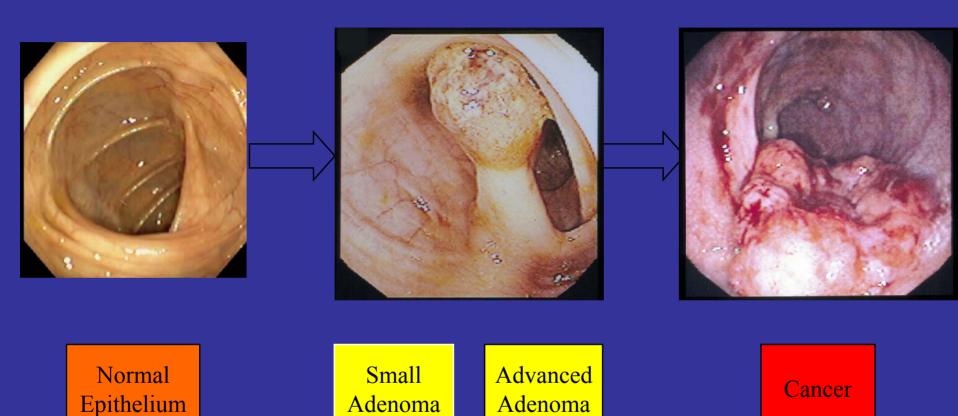
	<i>Lieberman</i> VA Study Group 380	<i>Imperiale</i> Eli Lily	Schoenfeld CONCeRN	Winawer National Colonoscopy Study
Study Design	Non- Randomized	Non- Randomized	Non- Randomized	Randomized Screening Colonoscopy vs Usual Care
Gender	Men (98%)	Men and Women	Women Only	Men and Women
Sample size	3121	1994	1322	1402

Lieberman. NEJM 2000 Imperiale. NEJM 2000 Schoenfeld. 2005 Winawer, Zauber. 2002

Comparison of Neoplastic Findings in Colonoscopy Screening Trials

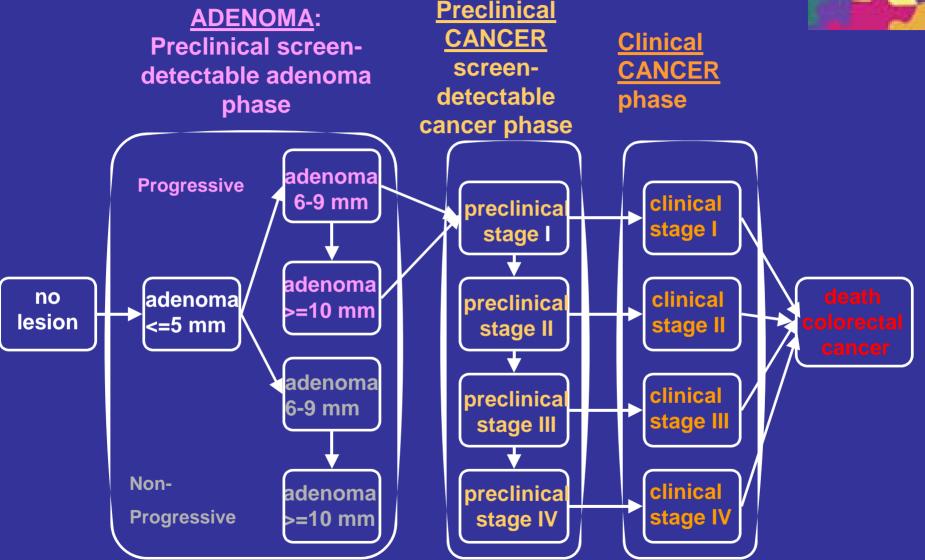
Neoplastic Findings	Lieberman VA Study Group 380 (N=3121)	Imperiale Eli Lily (N=1994)	Schoenfeld CONCeRN (N=1322)	Winawer National Colonoscopy Study (N=1402)
Any adenoma or CR cancer	38%	23%*	20%	18%
Any <u>advanced</u> neoplasia	11%	5%*	5%	5%
Adv neoplasia in RT colon with no LF adenoma	2%	2%	3%	2%
RT adv neo- plasia with no LF adenoma	52%	46%	65%	70%

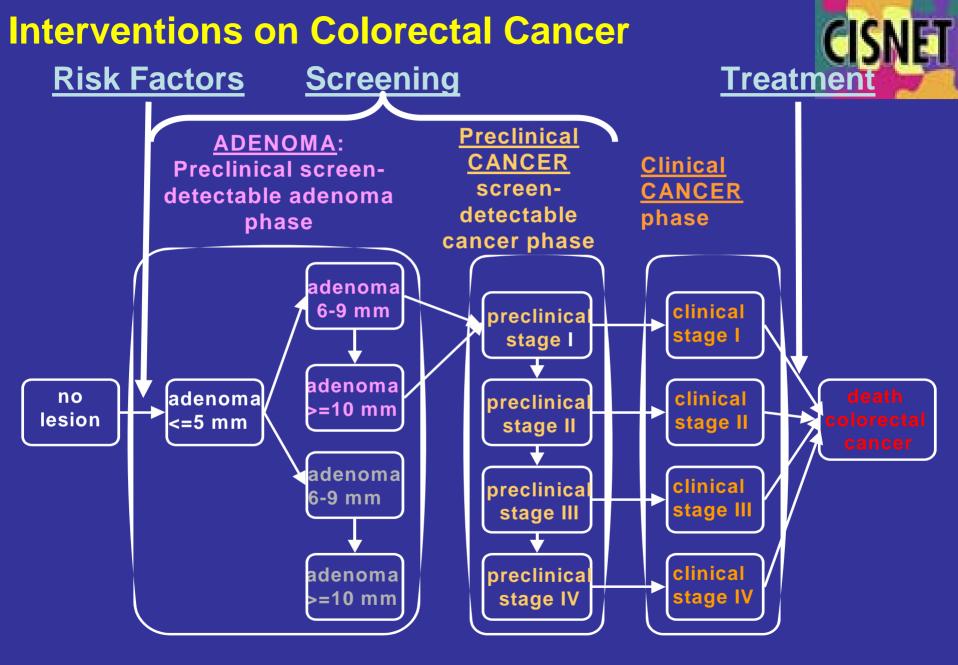
Modeling the Impact of Screening Colonoscopy


- Colonoscopy polypectomy effect estimated from flexible sigmoidoscopy RCT's
 - Assume comparable effect of left sided and right sided polypectomy
- Effect of colonoscopic polypectomy depends on characteristics of those screened
 - Higher risk screened or worried well?
- Awaiting the results of the Flex Sig RCTs

 Microsimulation Modeling for Colorectal Cancer

Adenoma to Carcinoma Pathway





Avg. 10–15 years

Natural History of Colorectal Cancer

Assumptions - MISCAN-Colon

Parameter	Value		Based on:
Adenoma incidence	Age dependent: 0.9-2.6% per year		Adenoma prevalence in autopsy and colonoscopy studies
Duration progressive adenomas	16.4 years	20 years	Expert opinion and exponential distribution
Duration pre- clinical disease	3.6 years		FOBT trials
Duration of non- progressive adenomas	Lifetime		Expert

Types of Factors for Intervention

RISK FACTORS	SCREENING	TREATMENT
Smoking	FOBT	1-drug: 5-FU (<i>pre-1996</i>)
Obesity	Flex Sig	2-drug: 5-FU and irinotecin
Red meat	Colonoscopy	(post 1996)
No physical activity		3-drug: 5-FU+irinotecan+ oxaliplatin (post 2002)
No folate		3-drug + biologics
(multivitamins)		(bevacuzimab/cetuximab)
No aspirin		(post 2004)

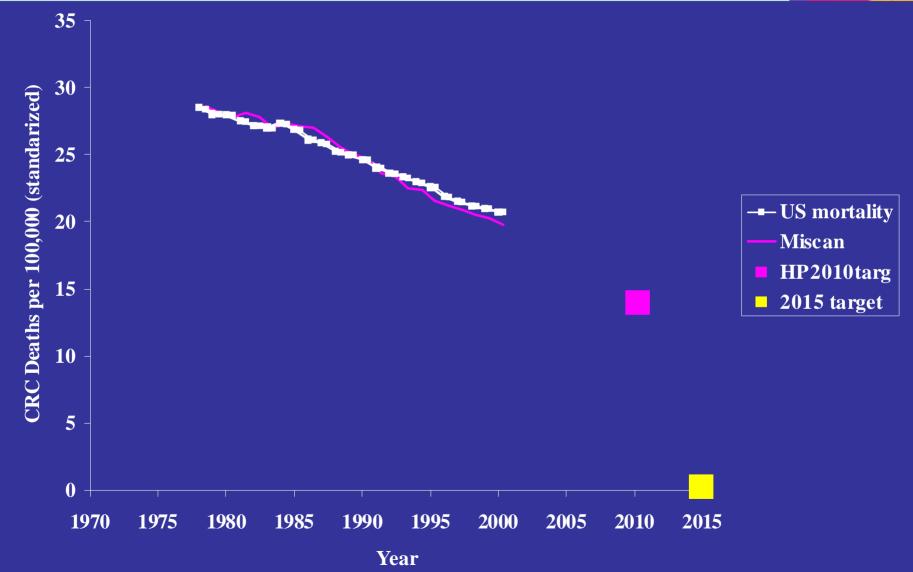
Relative risk of factor and prevalence of factor in population included in model

Microsimulation of US Population

2000 Age, sex, race of US population 2000 from multiple birth cohorts

- Risk factor prevalence
- Screening utilization
- Treatment dissemination

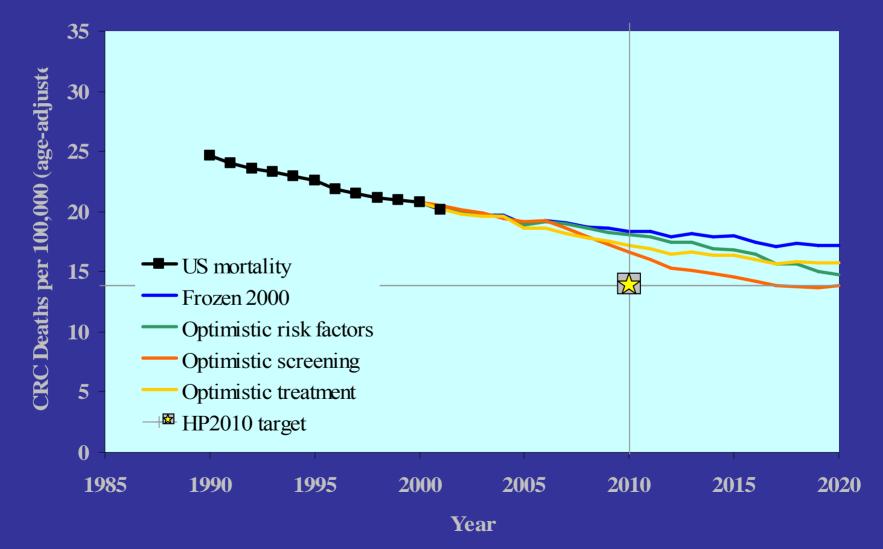
HP2010 Objective: 33% reduction in CRC mortality by 2010

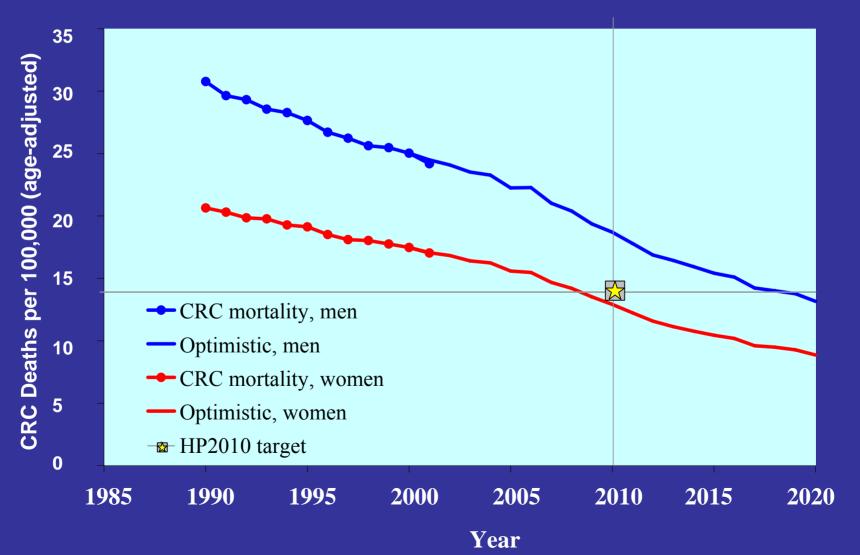

- Use micro-simulation modeling to determine
 - if reaching Healthy People 2010 goals for treatment, screening and prevention
 - will enable us to
 - fall short, meet, or exceed 2010 mortality goals of 33% reduction in CRC mortality
 - potential interventions to reach 2010 goals

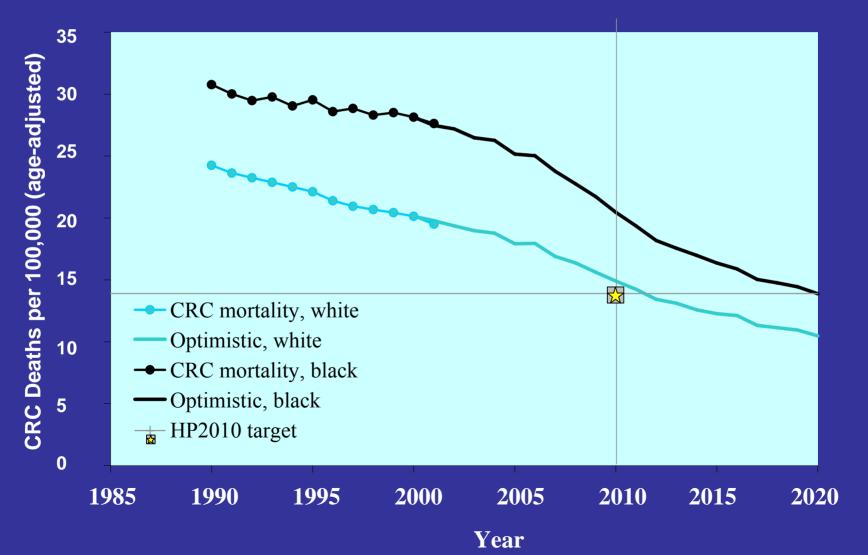
Four Intervention Scenarios

Frozen 2000	All factors stay at their 2000 level.
Extrapolated	All trends from 1995 to 2000 continue at their current rates until 2020.
Optimistic	From 2005 onwards: •Risk factor prevalence improves by another 2% per year (obesity stabilizes at its 2005 level) •CRC screening rates increase to 70% by 2010 •CRC patients get best treatment available
Best Case	 From 2005 onwards: •All risk factors eliminated •All age ≥50 have CRC screening •All CRC patients receive optimal treatment

US Colorectal Cancer Mortality Rates Observed and Model Predicted, with Healthy People 2010 Goal




Projected CRC Mortality for 4 Scenarios


Projected CRC Mortality for Optimistic Scenario by Risk Factor, Screening, and Treatment Interventions

Projected CRC Mortality for Optimistic Scenario for Men and Women

Projected CRC Mortality for Optimistic Scenario for Black and White

Effectiveness of Interventions

- Widespread use of currently available technologies can reduce CRC mortality almost 50% from 2000 to 2020 in the US.
- In the short term screening provides the largest effect on CRC mortality
- In the long term risk factor reduction has a strong effect on CRC mortality

Cancer Mortality Projections Web Site Under Development

Colorectal Home

Simulation Models

Interactive Graphs

Overview

Risk Factors

Screening

Treatment

Results

National Cancer Institute

U.S. National Institutes of Health | www.cancer.gov

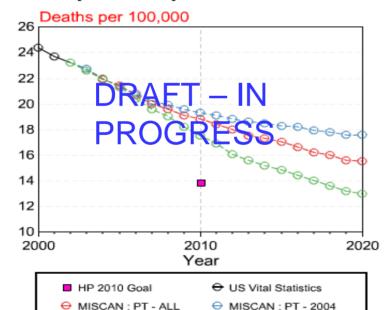
Cancer Mortality Projections

Modeling the impact of cancer control efforts on US cancer mortality

SEARCH @

Home

About CISNET


Modeling

Colorectal Cancer

Breast Cancer

Colorectal Interactive Graphs - MISCAN Model


Projected colorectal cancer mortality rate, by calendar year and scenario

 * Age-adjusted to the 2000 standard population using age groups <1y, 1-4y, 5-14y, 15-24y, 25-34y, 35-44y, 45-54y, 55-64y, 65-74y, 75-84y, 85+y

→ MISCAN : DFG - ALL

† Treatment-related goals were not included in the Healthy People 2010 goals. We included treatment goals to evaluate the potential impact on colorectal cancer mortality

Rocky Feuer

Potential Impact for Other Countries?

- How would we model the effect of screening interventions in other countries?
 - Assessing past impact
 - Projecting future impact

Inputs for population based microsimulation modeling for another country

- Population in 2000 by age-group
- Life tables (all cause mortality) per 5 –year birthcohort from births 1900-2000
- Age-specific incidence of CRC in 2000
- Stage Distribution of CRC in 2000
- Relative Survival by Stage
- Or
- Age-specific mortality of CRC in 2000
- Risk factor, screening, and treatment prevalence

Future Work

- Customizing screening intervals by race and gender
- Customizing surveillance intervals by characteristics of adenomas detected at screening
- Customizing screening tests by personal characteristics

Acknowledgements

- Memorial Sloan-Kettering
 - Deb Schrag
 - Sidney Winawer
- Erasmus MC Rotterdam
 - Iris Vogelaar
 - Marjolein van Ballegooijen
 - Rob Boer
 - Dik Habbema
- National Cancer Institute
 - Rocky Feuer
 - Martin Brown