Statistical Methods for Evaluating Mammography Interpretive Performance

Diana L. Miglioretti, PhD Sebastien JPA Haneuse, PhD

Group Health Center for Health Studies & University of Washington, Seattle, WA, USA

Breast Cancer Surveillance Consortium

breast cancer research

Background and Motivation

- Extensive variability in mammography interpretation exists among radiologists in the United States.
- Interest in understanding reasons for this variability
 - Patient factors
 - Age, breast density, time since last mammogram
 - Practice and facility characteristics
 - Double reading, CAD
 - Radiologist characteristics
 - Years of experience
 - Training
 - Specialty
 - Interpretive volume (current requirement 960 mammograms over 2 years)

Background and Motivation

- Conflicting study findings on whether and how interpretive volume influences performance
- Priorities from Institute of Medicine report on Improving Breast Imaging Quality Standards:
 - "Determine the effects of reader volume on interpretive accuracy, controlling for other factors that improve interpretive performance."
 - "More study is needed to <u>establish the implications</u>, <u>advantages</u>, and <u>disadvantages of statistical</u> <u>approaches to evaluating the influence of volume on</u> <u>interpretive performance</u>."

Physician characteristics associated

with *clinical* screening performance

Characteristic	Association	Reference
Years of Experience	\downarrow FP, no \triangle TP	Smith-Bindman, 2005
	\downarrow FP, \downarrow TP	Barlow, 2004
	↓ FP	Elmore, 2002
	\downarrow FP	Tan, 2006
Volume	\downarrow FP (middle vol), no Δ TP	Smith-Bindman (US), 2005
	↑ FP, ↑ TP	Barlow (US), 2004
	↑ PPV >4,000	Miglioretti (US), 2007
	\downarrow FP, no Δ CDR	Théberge (Quebec), 2005
	\downarrow FP, \uparrow or no Δ TP	Kan (BC), 2000
	no Δ CDR or Recall, \uparrow PPV	Coldman (Canada), 2006
	↑ CDR	Rickard (South Wales), 2006
Screening Focus	↑ FP, ↑ TP	Smith-Bindman, 2005
	no Δ FP or TP	Barlow, 2004
Specialists	\downarrow Recall, \uparrow CDR	Sickles, 2002 (<i>N</i> =10)
	no Δ Recall or CDR	Leung, 2007 (<i>N</i> =9)

Statistical issues that could account for conflicting study findings

Model assumptions

- *E.g.*, variability among radiologists does not depend on volume
- Expect more experienced radiologists to perform more similarly than less experienced radiologists
- Differences in regression frameworks used
 - Conditional/cluster-specific
 - Marginal/population-averaged

False-Positive Rate by Years of Experience and Fellowship Training

*Restricted to rates based on at least 100 mammograms. Red line indicates fellowship training.

Importance of Accounting for Clustering within Radiologists

- Mammography performance data are clustered
 - Radiologists have different skill levels and thresholds
 - Interpretations made by the same radiologist are correlated
- For valid inference, it is necessary to adjust for correlation among interpretations made by the same radiologist.
 - Naïve methods (chi-square, logistic regression) provide biased standard errors

Example:

- 50,000 mammograms interpreted by 10 radiologists (5 experienced, 5 non-experienced)
- Tempting to think of as 50,000 independent observations
- Reality is that sample size is closer to "10" independent observations

Common Regression Methods for Clustered Binary Data

Conditional (cluster-specific) Models

- logit($P(\text{recall} | \mathbf{x}_{ij}, z_i)) = \mathbf{x}_{ij}\beta^c + z_i$
- z_i = radiologist-specific effect to account for correlation
- Random effects model: $z_i \sim Normal(0, \sigma^2)$
- Conditional logistic regression: z_i fixed effect

Marginal (population-averaged) Models

- logit($P(\text{recall} | \mathbf{x}_{ij})) = \mathbf{x}_{ij} \beta^M$
- Generalized Estimating Equations (GEE)
 - Robust standard errors take into account correlation
- Likelihood-based approaches
 - Fully parameterized model for association
- β^C = average effect for an individual radiologist
 <u>or</u> average effect controlling for z
- β^{M} = population-averaged effect

Radiologist-Specific vs. Population-Averaged Effects

- Example: Model for effect of high vs. low interpretive volume on sensitivity
- Radiologist-specific odds ratio
 - Change in odds of a *true positive* assessment if a radiologist was high-volume compared to low-volume
- Population-averaged odds ratio
 - Sensitivity of mammography interpreted by the population of high-volume compared to low-volume radiologists
- Answer different scientific questions but both have meaning (and both may be of interest!)
 - Volume: increase volume vs. stop practicing

Relationship between Conditional and Marginal Models

- Constant random effect variance:
 - Marginal OR is attenuated towards 1.0 relative to conditional OR
 - If conditional model is correctly specified, marginal model will have correct type I error rate
- If random effect variance depends on X:
 - Relative to conditional OR, marginal OR may be attenuated, amplified, or even in opposite direction!

OR^M = 0.71, OR^c = 0.67,

$$\sigma_0$$
 = 1, σ_1 = 1
 z_i = -1.5σ to 1.5 σ by .25

OR^M = 0.71, OR^c = 1.7 σ_0 = 0.5, σ_1 = 2 Z_i = -1.5σ to 1.5 σ by .25

Summary and Conclusions

- Marginal and conditional models may give different results, because they are modeling different probabilities
 - Marginal effects attenuated if random effect variance constant
 - Marginal effects may be amplified, attenuated, or even in the opposite direction if the random effect variation depends on the covariate of interest
- If interest is in conditional inference
 - Important to take into account differences in RE variation
 - Assuming constant variance can lead to bias
 - Easy to do using standard software
- If interest is in marginal effects
 - May be important to understand mechanism for generating those effects
- Often important to understand reasons for differences in marginal and conditional results