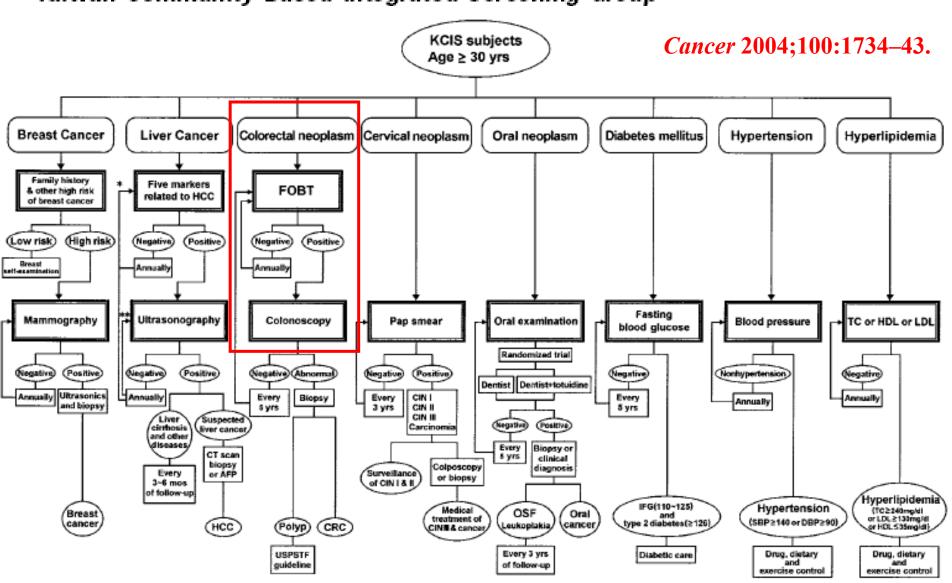
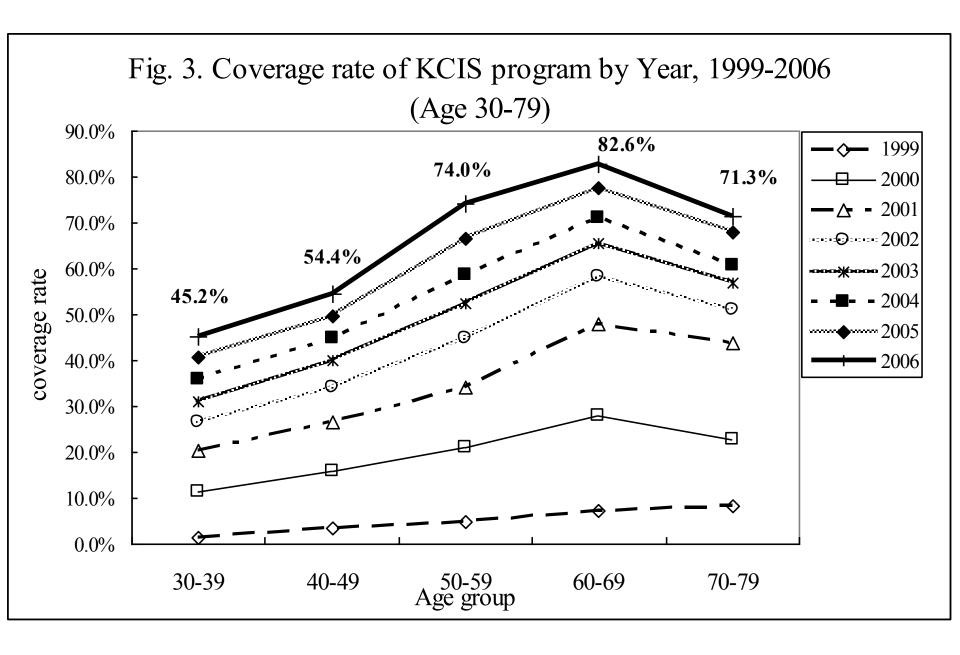


Prof. Tony Hsiu-Hsi Chen

Division of Biostatistics, College of Public Health, National Taiwan University/

School of Public Health, University of Tampere/
President of International Asian Cancer Screening Society
2008/06/06


Map of Taiwan


Keelung community-based integrated screening (KCIS) has started since 1999

Community-Based Multiple Screening Model

Design, Implementation, and Analysis of 42,387 Participants Taiwan Community-Based Integrated Screening Group

Community-based FOBT Screening

Out-reaching screening

Instruction for FOBT

Scheduled Referral

Health Education

SUPPLEMENT

Colorectal cancer screening with faecal occult blood test within a multiple disease screening programme: an experience from Keelung, Taiwan

Kuo-Ching Yang, Chao-Sheng Liao, Yueh-Hsia Chiu, Amy Ming-Fang Yen and Tony Hsiu-Hsi Chen

J Med Screen 2006;13 (Suppl 1):S8-S13

FOBT compliance rate

Table 1 Numbers of invitees and compliers by age groups in the Keelung programme, 2000–2002

	Number invited to screen	Number of compliers	Compliance rate (%)
First screening			
50–59	10,426	8750	84
60–69	9374	7736	83
<i>7</i> 0–79	6208	4835	<i>7</i> 8
Total	26,008	21,321	82

Colonoscopy referral rate

Table 2 Rates of positive FOBTs and compliance with follow-up colonoscopy in the Keelung programme, 2000–2002

	Number screened	Number of positive FOBT (%)	Number attending colonoscopy	Colonoscopy attendance rate (%)
First screening				
50–59	8750	393 (4.5%)	270	69
60–69	<i>7</i> 736	448 (5.8%)	323	72
70–79	4835	353 (7.3%)	223	63
Total	21,321	1194 (5.6%)	816	68

JMS 2006,13: S8-S13

Int. J. Cancer: 122, 1357–1367 (2008)

© 2007 Wiley-Liss, Inc.

Colorectal cancer screening: A comparison of 35 initiatives in 17 countries

Victoria S. Benson¹, Julietta Patnick^{1,2}, Anna K. Davies³, Marion R. Nadel⁴, Robert A. Smith⁵ and Wendy S. Atkin^{6*} on behalf of the International Colorectal Cancer Screening Network

Taiwan ³	Pilot	FOBt		Community- Integrated ning	Kelung, Northern Taiwan	Resident population	50–79		81,000	LG
									110	,
Austral Japan Taiwar	lia (Pilot) n ²		Pilot Program Pilot	I I I	Magstream HemS, Inform Not specified Eiken	n Biennial Annual Annual	2 2 1	2 2 1	No No No	0

¹Cancer Epidemiology Unit, University of Oxford, England, United Kingdom

²NHS Cancer Screening Programmes, Fulwood House, Sheffield, England, United Kingdom

³Department of Clinical Health Psychology, University College London, England, United Kingdom

⁴Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA

⁵Cancer Control Department, American Cancer Society, Atlanta, GA

⁶Cancer Research UK Colorectal Cancer Unit, St Mark's Hospital, NW London Hospitals Trust, Harrow, Middlesex, England, United Kingdom

Map of Taiwan

Keelung community-based integrated screening (CIS) has started since 1999

19/23 counties in Taiwan have adopted CIS

Nationwide FOBT screening

免費大腸癌篩檢服務

諮詢專線: 07-6222131 轉 130.161

- 50~69 years of age
- Mass media
- Ambulatory propaganda
- Immunological FOBT
- Web-based referral and surveillance

Attendance rate

Jan 2004 - Oct 2006

	Age group	Invited	Screened	Percentage (%)
Male	50-54	73,681	71,881	97.56
	55-59	66,354	64,935	97.86
	60-64	58,082	56,755	97.72
	65-69	76,345	74,613	97.73
		274,462	268,184	97.71
Female	50-54	144,506	141,390	97.84
	55-59	115,121	112,962	98.12
	60-64	92,961	91,026	97.92
	65-69	97,954	95,666	97.66
		450,542	441,044	97.89
Both gender	50-54	218,187	213,271	97.75
	55-59	181,475	177,897	98.03
	60-64	151,043	147,781	97.84
	65-69	174,299	170,279	97.69
Unknown		726	700	96.42
Overall		725,730	709,928	97.82

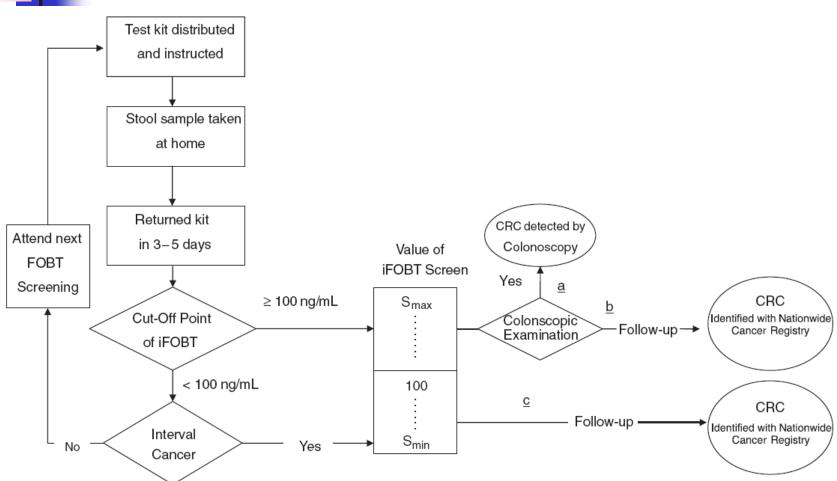
Positive rate and referral rate

Jan 2004 - Oct 2006

	Age group	Screened	FOBT (+)	Positive rate (%)	No. referred	Referral rate (%)
Male	50-54	71881	2617	3.64	1885	72.03
	55-59	64935	2808	4.32	2030	72.29
	60-64	56755	3029	5.34	2257	74.51
	65-69	74613	4332	5.81	3190	73.64
		268184	12786	4.77	9362	73.22
Female	50-54	141390	3863	2.73	2826	73.16
	55-59	112962	3563	3.15	2648	74.32
	60-64	91026	3409	3.75	2570	75.39
	65-69	95666	3961	4.14	2866	72.36
		441044	14796	3.35	10910	73.74
Both gender	50-54	213271	6480	3.04	4711	72.70
	55-59	177897	6371	3.58	4678	73.43
	60-64	147781	6438	4.36	4827	74.98
	65-69	170279	8293	4.87	6056	73.03
Unknown		700	21	3.00		61.90
Overall		709928	27603	3.89	20285	73.49

Quantitative assay of iFOBT

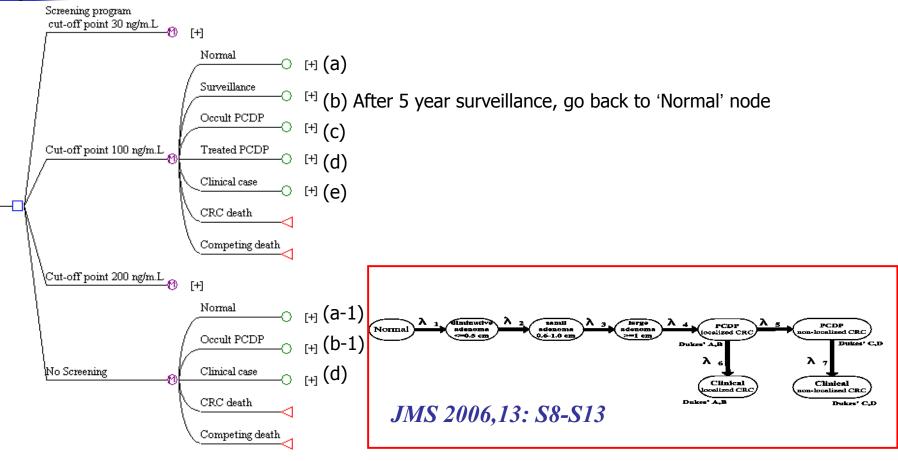
 Determining the optimal cut-off of iFOBT by receiver operating characteristics (ROC) curve and costeffectiveness analysis with deterministic and probabilistic approach



Cut off	True CRC		
Cut-off	Yes	No	
$\geq x$	a	ь	
< X	С	d	

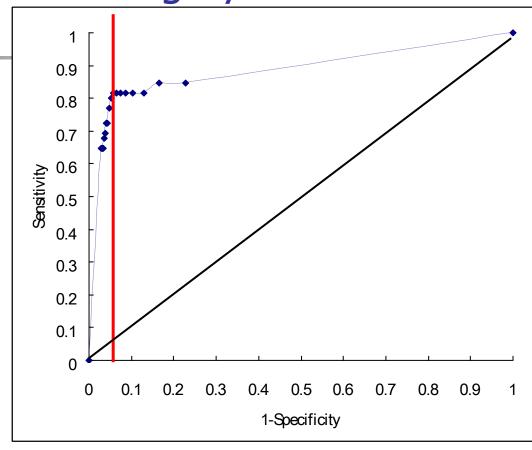
- Are c and d available from population-based screening ?
- Solution: Assume interval cancer as false negative cases

Procedure for collecting iFOBT sample and relating the value of iFOBT to CRC



KCIS data

 Data Source: Colorectal cancer screening in KCIS program during the period of 2000 to 2004

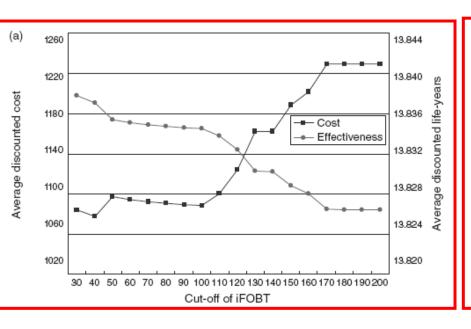

There are 36,145 subjects attended in first screening and 19,020 subjects attended in later screening and 11 CRC detected. Markov Cycle Decision tree used to evaluate costeffectiveness of alternative screening for CRC given different cut-off point of FOBT opposed to no screening

Decision node, [©]Markov cycle, ∴hance node (the assignment of probability), dback to Markov cycle 16 Determining the optimal cut-off point of iFOBT for colorectal cancer screening by ROC

The ROC curve was derived by plotting 1specificity (X) against sensitivity (Y) given a series of cutoffs of iFOBT

The closer the ROC curve to the upper-left corner, the higher the predictive power for predicting CRC

AUC:0.87

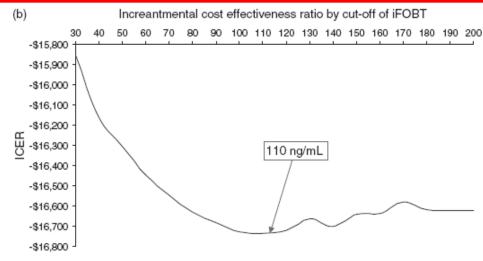
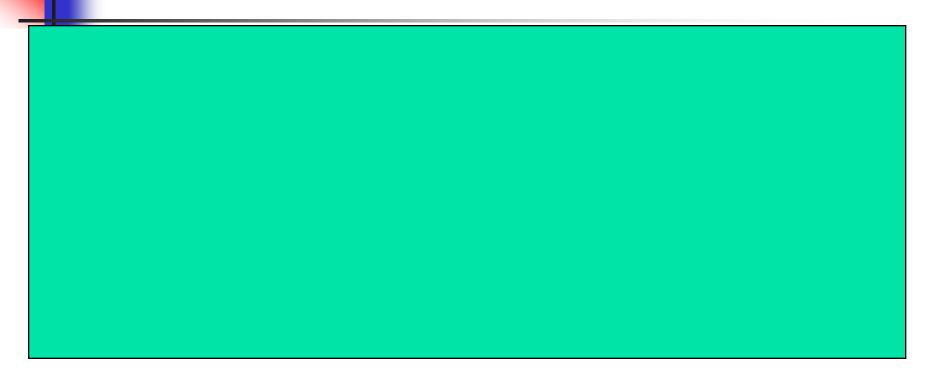

Chen LS et al. J Med Screen 2007;14:191–199

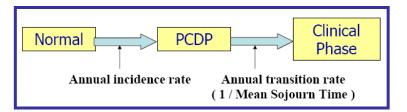
ORIGINAL ARTICLE

Cost-effectiveness analysis for determining optimal cut-off of immunochemical faecal occult blood test for population-based colorectal cancer screening (KCIS 16)

Li-Sheng Chen, Chao-Sheng Liao, Shu-Hui Chang, Hsin-Chih Lai and Tony Hsiu-Hsi Chen

J Med Screen 2007; 14: 191-199


Figure 4 The change of average discount cost (\$US) and life years and ICERs by cut-off values of iFOBT

Probability for interval cancer and screen detected CRC for FOBT < 100 ng/mL

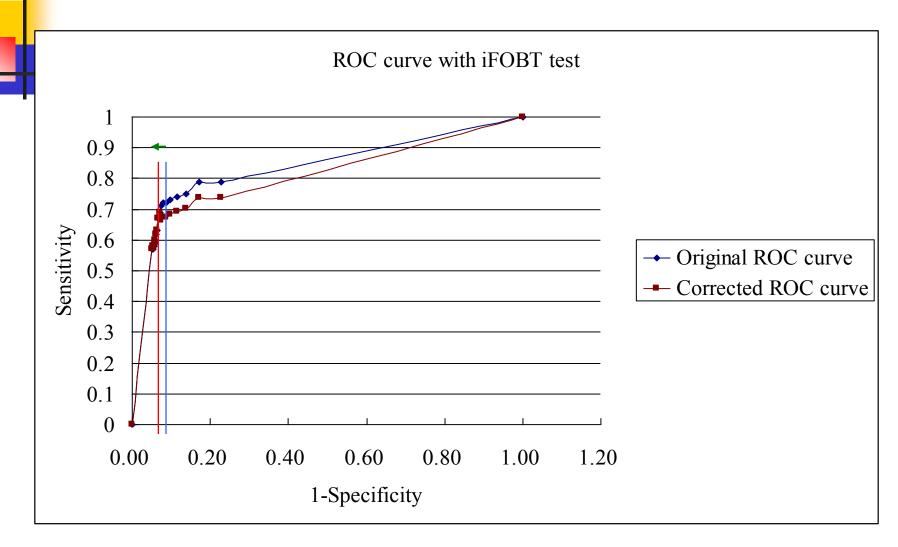
 λ_1 : Annual incidence rate

 λ_2 : Annual transition rate

S: Calendar time before screening

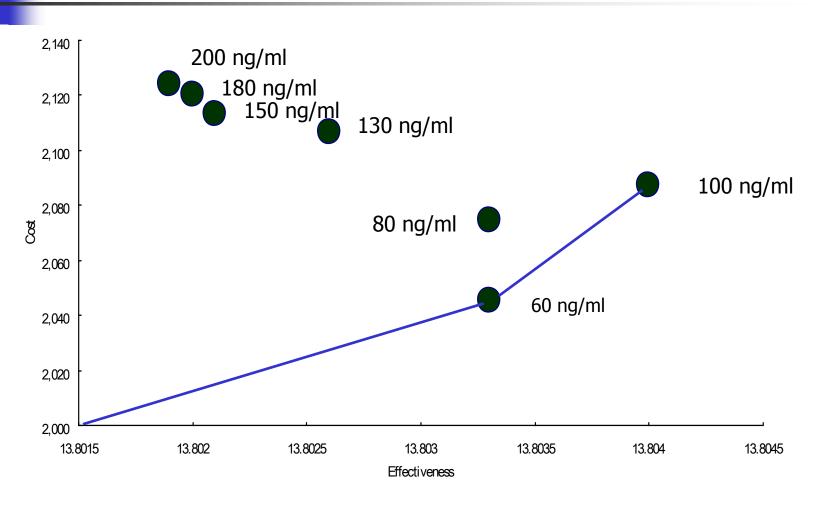
Age: Age at first screening

u: Calendar time between screens

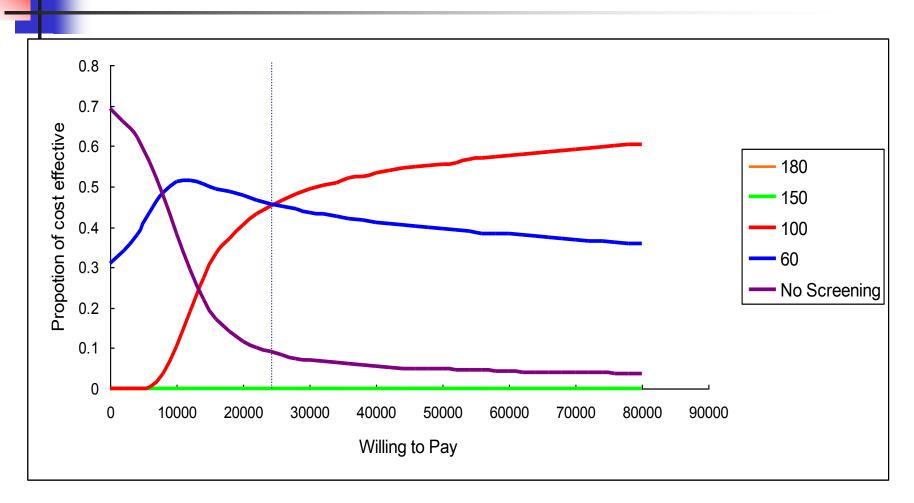

t: Time interval between screens

X: Calendar time at Later Screening

Transition Rates for tumour from FOBT < 100 ng/mL


Parameter	Estimation	Lower	Upper
λ_1	0.00031	0.000162	0.000458
	(per person-year)		
λ_2	0.1116	0.07681	0.1463
- 2	(per year)		

ROC curve corrected by multi-state model



Optimal cut-off point from 90 ng/ml to 100 ng/ml

Cost Effectiveness Plane

Acceptability Curve

Conclusion

The optimal cut-off based on multi-state ROC method is 100 ng/mL

 Probabilistic CEA approach suggest the optimal cut-off is determined by "how much society or individual are willing to pay (WTP)".

International Asian Conference of

Cancer Screening (IACCS)

Keelung City, Taiwan, 2004

指導單位: (188) 行政院衛生署國民健康局

主辦單位 為台灣節檢學會

Nov.21-22

活動目期

International Asian Conference of Cancer Screening

活動地點

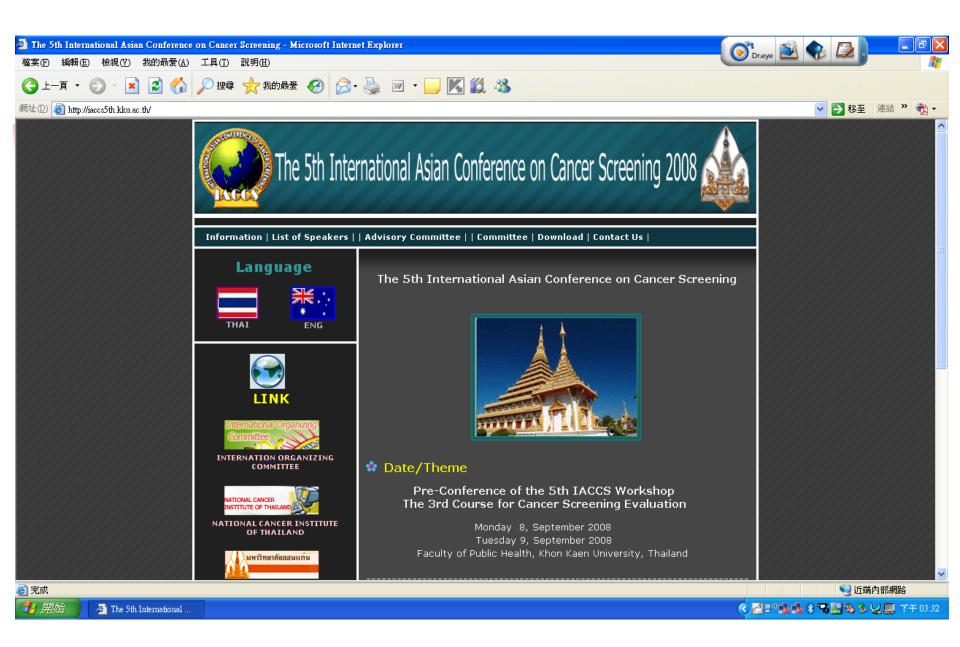
國並臺灣科學教育館

National Taiwan Science Education Centre

邀請您參與亞洲癌症節檢學術交流一年一度的 盛會,見證亞洲癌症防治與世界公共衛生潮流 接執的重大里程碑…

報名傳真: (02)2820-7273

活動網頁:接此前往


Singapore, 2006

Chuanghua, Taiwan, 2007

The official website of IACCS

Thank you for listening